Questionnaire

Training Organisation	University of Ljubljana, Faculty of Natural Sciences and Engineering,
	Department of Geotechnology and Mining Engineering
Country	Slovenia
First Name	Jakob
Last Name	Likar
E-mail	jakob.likar@ntf.uni-lj.si
Town	Ljubljana

Courses offered

Programme ¹	Course	Semester	Type ²	Hrs ³	CP^4	Syllabus
B-ME	Underground Structures I	5	C	45hrs/semester of lectures 35hrs/semester of exercises 2days/semester of field training	6	Basic principles and general criteria for designing and construction of underground structures, investigation and description of the ground conditions, structural analysis and dimensioning, excavation methods and sequences, primary support, construction contract, organization of project execution.
B-ME	Underground Structures II	6	E	40hrs/semester of lectures 20hrs/semester of exercises 10hrs/semester of seminar 1 day of field training	5	Special methods of construction of large underground structures, layout of underground structures, modifications to construction methods on site, dewatering and drainage, ground reinforcement, special geotechnical measurements and monitoring the construction of underground structures with feedback parameter analyses during the construction and

B-CE Bachelor programme in Civil Engineering

M-CE Master programme in Civil Engineering

B-ME Bachelor programme in Mining Engineering

M-ME Master programme in Mining Engineering

MAS Master of advanced studies

² C: compulsory E: elective

1

³ Number of teaching hours/week for lectures and exercises

⁴ Number of ECTS credit points (1 credit point = 30 hours student workload incl. homework)

					operation of such structures
M-ME Construct and Risk Manager	etion nent	C	45hrs/semester of lectures 45hrs/semester of exercises 20hrs/semester of seminar 2t day of field training	8	Choice of tunnel system and alignment, shape of cross section, excavation and support, outline of the design process, monitoring of tunnel atmosphere, objectives of monitoring, tunneling boring machines and road headers hazards and their mitigation. Technical and technological part of topics which include - grouting and reinforcement of ground layers by injecting, installation of bearing steel structures and other materials, chemical procedures for optimizing the bearing capacity of geological materials; - performance analyses of active and passive anchoring systems by considering time interdependence of individual types of ground; - procedures for ensuring long-term stability of underground structures; - economic criteria in planning of the construction of underground structures in known geotechnical and technological conditions for the implementation of works and by considering the environmental requirements; - special geotechnical measurements and monitoring the construction of underground structures with feedback parameter analyses during the construction and operation of such structures; - designing ventilation measures during the construction and operation of such underground structures.
M-ME Security Manager of Undergro Structure	and 3 ment bund	E	30hrs/semester of lectures 10hrs/semester of exercises 20hrs/semester	5	The theme of the course deals with the procedures and methods of planning and performance management systems and operation

			1 day of field training		facilities for a variety of purposes with an emphasis on road, rail and other transportation tunnels and ancillary facilities in terms of the conditions laid down in the field of functional usability, management techniques and safety during construction and operation as well as methods of making analyses of risk assessments. Included is an upgrade of the basic principles of research methods in order to solve complex technical problems of management and administration. Particular attention is paid to the analysis of the specific conditions of ventilation and emergency response in underground facilities, analytical evaluation of the planning processes of underground structures taking into account the methods of risk for both classical construction systems as well as risk analysis, construction of underground structures using the TBM with a critical assessment of individual solutions. Some content also relates to the analysis of fire scenarios in underground facilities, and analysis of possible ways to act in emergency situations.
Others*	Sustainable development oriented technologies of underground space used	E	60hrs/semester of lectures 40hrs/semester of exercises 45hrs/semester of seminar 1 day of field training 145hrs/semester of individual work	10	Revising the basics of planning the construction of underground structures with regarding to their functionality and modern principles of designing accordance to sustainable development large areas and in the case of development infrastructure and energy supply urban parts of the country. The emphasis of described fundamentals is on following

						topics: - adjustment possibility underground space use in the name of preservation environment and region, - placement of underground spaces in the integrity frame to find infrastructure solution in the aim of country parts of sustainable development, - verification possibilities of underground space use regarding adaptation to arriving climate changing with emphasis on research rational and environmental suitable technical solutions, Technical and technological part of topics which include underground space use are: - modern methods of construction of underground structures in normal bearing capacity and stable rocks, - modern methods of construction of underground structures in weak rocks and unstable soils, - application of modern and professionally established numeric methods with emphasis on the analysis of interaction between the ground and the support by considering rheological laws for individual types of ground.
Others**	Modern construction technologies and numeric modelling of underground structures	1	E	30hrs/semester of lectures 20hrs/semester of laboratory work 40hrs/semester of seminar 1 day of field training 50hrs/semester of individual work	5	The course has been designed in view of the specifics and complexity of underground construction. It includes the following topics: -detailed and accurate analyses for understanding modern construction methods of underground structures, considering methods of observation and their practical applications, -planning target-oriented research and observations of rock sites by using critical assessment of the research methods, their advantages and limitations, -analysis of laboratory

			methods of rock research by
			critical evaluation of the
			results in terms of defining
			project parameters,
			-engineering assessment of
			the classification of rocks
			with emphasis on
			determining geomechanical
			parameters of the rock mass
			and the broader construction
			site
			-aeotechnical design of the
			system rock – construction
			by using the results of
			deomechanical analyses
			analysis and critical
			-analysis and childal
			technological risks in using
			avelia mothoda of the
			cyclic methous of underground
			construction of underground
			Siluciules
			-economic aspects and
			contractual relationships
			between the contractor and
			the client,
			-analysis and critical
			evaluation of geological and
			technological risks in using
			machine methods in
			underground construction
			with emphasis on TBM,
			 economic aspects and
			contractual relationships
			between the client and
			contractor of underground
			structures by considering the
			principles of TBM,
			-deep understanding
			analysis of construction
			phases and numerical
			simulation with
			implementation of suitable
			constitutive models of rocks
			in conventional cyclic and
			mechanical methods of
			underground excavations,
			-survey, observation and
			assessment of key methods
			in conducting underground
			constructions with special
			consideration to the
			economic principles and
			regulations for safe work in
			underground environments
			-methods of planning and
			implementation of safety
			measures with regard to the
 1	L		measuree man regula to the

			legislation in the field of
			health and safety at work.

Remarks:

* Interdisciplinary Doctoral Programme in Environmental Protection at the University of Ljubljana

** Interdisciplinary Doctoral Programme in Materials Science and Engineering at the Faculty of Natural Sciences and Engineering