Challenging Projects List 2011

October 2011

S.N.	Project Nr.	Project Name	Criteria							
			2. Geology		$3 .$ Tunnel Alignment					
				O C O O 世 0 0 N N			$\begin{aligned} & \text { ל亠 } \\ & \substack{0 \\ 0 \\ \text { m } \\ \text { m }} \end{aligned}$			
1	09-001	Shanghai Yangtze Road Tunnel China		x	x	X	X			
2	09-002	Shanghai Shangzhong Road River-crossing, China		x			X			
3	09-003	Shanghai East Fuxing Road Tunnel, China		x			x			
4	09-004	Uetliberg Railwaytunnel, Zürich, Switzerland				X				x
5	10-001	Trans-Bay Gas Pipeline, Futtsu city, Japan		x	x					
6	11-001	Galleria Sparvo, Castiglione dei Pepoli (BO), Italy				X				X
7	11-002	Dez to Ghomroud Water Conveyance Project, Long Tunnel Lot 1, Iran		XX	x					

The projects are sorted according to the red field indications

CHALLENGING PROJECTS WORLDWIDE

PROJECT Shanghai Yangtze Road Tunnel, China

Project Description	
Location	Wuhaogao ~ Changxing Island, Shanghai, China
Usages of the Tunnel	River-crossing, Highway
Year of Construction Start	2 0 0 4
Year of Const.Completion	2 0 1 0
Actual Construction Cost	951 Mio.US\$

Owner's Detail	
Name	Shanghai Yangtze Tunnel \& Bridge Development Co., Ltd
Address	No.999 Miaoche Road, Shanghai Jiang Yunsu
Phone	Fax: +86-21-5863 2938
E-Mail	

Picture 2 :

Technical Data		
Length of Tunnel	7.4	km
Excavation diameter	15.43	m
Overburden depth	27	m Max.
	7.2	m Min.
Initial lining	Segmental Lining : sealed	
Thickness	0.65	m
Inner Dia.	13.7	m
Final lining	None	
Thickness	m	
Inner Dia	m	
Special Lining		
Water Pressure	5.5	bar (Max.at Crown)
TBM Parameters		
Type of TBM	Soft Ground Slurry Support	
Length of TBM		m
Weight of TBM		Metric ton
Trailing Gear Length	120	m
Mucking System	Slurry circuit	
Progress Data		
Mining Hours/Day		Days/Week
Average Progress/Calendar Day		m
Average Advance/Cal.Month		m
Peak Advance/Cal.day		m
Peak Advance/Cal.Week		m
Peak Advance/Cal.Month		m

CHALLENGING PROJECTS WORLDWIDE

PROJECT

Project Geology
gray clayey silt, gray mucky \& silty clay, gray muddy clay, gray clay, grass yellow clayey silt, gray sandy silt

Additional

Project
Information
Prominent Features of the Project:

1. River-crossing tunnel for highway with 6 lanes in bi-direction.
2. Largest slurry balanced shield machine($\Phi 15.43 \mathrm{~m}$).
3. Non-stop driving distance of $7,472 \mathrm{~m}$.
4. Universal ring, small key segment, oblique bolt connection.
5. High water pressure, 0.55 Mpa .
6. Synchronize the construction of road pavement and tunnel boring.
7. Eight cross passages linking two bore tunnels.

Reference

Publications

CHALLENGING PROJECTS WORLDWIDE

PROJECT Shanghai Shangzhong Road River-crossing Tunnel, China

Project Description	
Location	Huaxia Road ~ Hongmei Road, Shanghai, China
Usages of the Tunnel	River-crossing, Expressway
Year of Construction Start	
Year of Const.Completion	2 0 0 7
Actual Construction Cost	230 Mio.US\$

Owner's Detail	
Name	Shanghai Municipal Engineering Administration
Address	No.500 South Pudong Road, Shanghai, China
Phone	fax: +86-21-5888 6262
E-Mail	

Picture 1: Tunnel view

Picture 2: Tunnel view

Technical Data			
Length of Tunnel	1.3	km	
Excavation diameter	14.87	m	
Overburden depth	33	m Max.	
	8.4	m Min	
Initial lining	Segmental Lining : sealed		
Thickness	0.6	m	
Inner Dia.	13.3	m	
Final lining	None		
Thickness		m	
Inner Dia		m	
Special Lining			
Water Pressure	6	bar (Max.at Crown)	
TBM Parameters			
Type of TBM	Soft Ground Slurry Support		
Length of TBM	12.6	m	
Weight of TBM	1900	Metric ton	
Trailing Gear Length 107			
Mucking System	Slurry circuit		
Progress Data			
Mining Hours/Day	20	Days/Week	
Average Progress/Calendar Day		9	m
Average Advance/Cal.Month		240	m
Peak Advance/Cal.day		16	m
Peak Advance/Cal.Week			m
Peak Advance/Cal.M	Month	280	m

ITA WG 14 - Mechanised Tunnelling

CHALLENGING PROJECTS WORLDWIDE

PROJECT \quad Shanghai Shangzhong Road River-crossing Tunnel, China

Project Geology gray muddy clay, gray silty clay, dark green silty clay, caesious~yellow sandy silt, grass yellow silty-fine sand

Additional

Project
Information
Prominent Features of the Project:

1. Shallow overburden, constructed by super-large slurry balanced shield (14.87 m dia).
2. Double-deck road tunnel with 8 lanes in bi-direction.
3. Universal segment in staggered joint.
4. No cross passage between two bores, use stairway to link upper and lower decks in single bore instead.

Reference

Publications

CHALLENGING PROJECTS WORLDWIDE

PROJECT Shanghai East Fuxing Road Tunnel, China

Project Description	
Location	East Fuxing Road ~ Zhangyang Road, Shanghai, China
Usages of the Tunnel	Urban Road Tunnel
Year of Construction Start	2 0 0 1
Year of Const.Completion	2 0 0 4
Actual Construction Cost	258 Mio.US\$

Owner's Detail	
Name	Shanghai Bridge Construction Administration
Address	No.848 Yun Qiao Road, Shanghai, China
Phone	Fax: +86-21-6439 2955
E-Mail	

Picture 1: Upper Deck

ITA WG 14 - Mechanised Tunnelling

CHALLENGING PROJECTS WORLDWIDE

PROJECT

Shanghai East Fuxing Road Tunnel, China

Project Geology
gray mucky \& silty clay, gray muddy clay, gray clay, gray silty clay, dark green ~grass yellow clay, grass yellow sandy silt, grass yellow silty-fine sand, gray sandy silt

Additional

Project
Information
"Prominent Features of the Project:

1. Shallow overburden, constructed by slurry balanced shield.
2. Two slurry balanced shield machines bored forward at the same direction.
3. Double-deck road tunnel with 6 lanes in bi-direction.
4. A bracket was cast together with the segment, functioning as a support of the upper level deck.
5. Bored by slurry balanced shield machine, lining ring in staggered joint.
6. A total of 4 cross-passages between the two bores."

Given mining hours (4 hr/day) is excluding the lining erection time

Reference

Publications

Criteria for the Challenging Project List

1. 2.2.5 Soft Ground_Applied face support pressure [≥ 5 bar] 5 bar
2. 3.3.2 Cover above tunnel lining in soft ground, 10% [≤ 0.9 Dia.] 8 m
3. Choose a Criteria for Challenging Project \square

CHALLENGING PROJECTS WORLDWIDE

PROJECT Uetliberg Railway Tunnel, Zürich, Switzerland

Project Description	
Location	Zurich, Switzerland
Usages of the Tunnel	Road tunnel, bypass
Year of Construction Start	2 0 0 1
Year of Const.Completion	2 0 0 8
Actual Construction Cost	850 Mio.US\$

| Owner's Detail
 Name Otto Schnelli
 Address Public Works Department, Canton
 Zurich Walcheplatz 2,
 POB 8090 Zurich, Switzerland
 Phone
 E-Mail |
| :--- | :--- |

CHALLENGING PROJECTS WORLDWIDE

PROJECT
molasse (sandstone / siltstone / marl, all layers flat bedded)

Additional

Project
Information
"Prominent Features of the Project- Advantage of ventilation through the before bored pilot tunnel ($\mathrm{d}=5.0 \mathrm{~m}$)- Only shotcrete with steelfibres and FRP rock bolts as rock support in pilot tunnel, because TBE(Tunnel Bore Extender) has to excavate this rock support later- Largest cutterhead with undercutting technique in the world- Possibility of boring a non circular profile by using three overcutters- Working against the tensile strength of the rock by using undercutting technique instead of the compressive strength- Need of 50% less energy by using undercutting technique instead of conventional TBM heading- Swellex rock bolts with nets for head protection- Rock support (Swellex) installed within 4 m behind cutterhead- In L1 5 cm of shotcrete, rest in L2- Loosening rock right above the cutterhead because of flat bedded layers of sand-, siltstone and marl; chosen rock support measures were appropriate (flexible)"
Drainage system is used in TBE-molasse section, so ground water pressure could be taken as 0 MPA.

Reference

Publications

Criteria for the Challenging Project List

1. 3.2.1 Tunnel bored diameter in hard rock [$\geq 14 \mathrm{~m}$ or $\leq 1.2 \mathrm{~m}]$

14.4 m

2. 4.0 Technology_Newly developed means and methods of TBM
3. Choose a Criteria for Challenging Project

In the Uetliberg molasse section, the tunnel was excavated using a tunnel boring machine (5.0 m diameter) followed by a tunnel bore extender (TBE) which applies undercutting techniques to widen the previously cut pilot tunnel to its full cross-section diameter of 14.20 to 14.40 m .

CHALLENGING PROJECTS WORLDWIDE

PROJECT Trans-Bay Gas Pipeline, Futtsu city, Japan

Project Description		
Location	Futtsu city, Japan	
Usages of the Tunnel	Gas Pipeline	
Year of Construction Start	2 0 0 3	
Year of Const.Completion	2 0 0 7	
Actual Construction Cost		Mio.US\$

Owner's Detail	
Name	Tokyo Electric Power Company, Inc. (TEPCO)
Address	1-3,Uchisaiwai-cho,1-choume, Chiyoda-ku,Tokyo, 100-8560 ,Japan
Phone	Fax (+81)-3-4216-4369
E-Mail	

Picture 1: Overview \& cross-section of pipeline route

Technical Data			
Length of Tunnel	18	km	
Excavation diameter	3.62	m	
Overburden depth	63.9	m Max. m Min.	
Initial lining	Segmental Lining : sealed		
Thickness	0.22	m	
Inner Dia.	3	m	
Final lining	None		
Thickness		m	
Inner Dia		m	
Special Lining			
Water Pressure	7	bar (Max.at Crown)	
TBM Parameters			
Type of TBM	Soft Ground Slurry Support		
Length of TBM	12.2	m	
Weight of TBM	210	Metric ton	
Trailing Gear Length	230	m	
Mucking System	Slurry Circuit		
Progress Data			
Mining Hours/Day		Days/Week	
Average Progress/Calendar Day		28	m
Average Advance/Cal.Month		604.9	m
Peak Advance/Cal.day		48	m
Peak Advance/Cal.Week			m
Peak Advance/Cal.Month		830.4	m

ITA WG 14 - Mechanised Tunnelling

CHALLENGING PROJECTS WORLDWIDE

PROJECT

Trans-Bay Gas Pipeline, Futtsu city, Japan

Project Geology

Additional

Project
Information

The geology is governed by stiff silty and sand mixture, nanagouti jayer diluvium (simousa layer). Tunnel section has maximum overburden of 35 m from sea bed.

Reference

Publications
In Trans-Bay gas line project, 20 km long tunnel will be constructed under Tokyo Bay. This gas line connects the terminals of Futtsu thermal power stations in Futtsu, Chiba to Higashi-Ogishima Thermal Power Station in Kawasaki. It establish a gas network linking five LNG thermal power stations of Chiba region with three LNG thermal power stations of Kanagawa region, which will improve the reliability of LNG supply. Excavation is performed from both ends (Futtsu and Higashi-Ogishima) and tunnel will meet under central Tokyo Bay. Length of tunnel (9.03 km) is one of the prominent feature. It is constructed without replacing cutter bit or any other parts.
Use of one-pass boltless joint segments (called, Quick Block Segment) and precast RC slab for invert has resulted short assembly time and better performance rate (> $500 \mathrm{~m} / \mathrm{month}$). Direct docking tunnel method is used to connect two alignment under high water pressure (6 bar). Precise tunnel shaft survey and horizontal bore probing (as close as 50 m) help to achieve millimeter precision in aligning shield machines.

CHALLENGING PROJECTS WORLDWIDE

PROJECT Galleria Sparvo, Castiglione dei Pepoli (BO), Italy

| Owner's Detail
 Name Autostrade Per I'Italia
 Address via Bergamini 50
 00159 Roma
 Italy
 Phone
 E-Mail |
| :--- | :--- |

Picture 1: Tunnel alignment and geology

Technical Data			
Length of Tunnel	4.9	km	
Excavation diameter	15.61	m	
Overburden depth	116	m Max.	
	7.5	m Min.	
Initial liningThickness	Segmental Lining : sealed		
	0.7	m	
Inner Dia.	13.6	m	
Final lining	None		
Thickness	m		
Inner Dia	m		
Special Lining			
Water Pressure	0	bar (Max.at Crown)	
TBM Parameters			
Type of TBM	Soft Ground EPB Support		
Length of TBM	120	m	
Weight of TBM	4500	Metric ton	
Trailing Gear Length	107	m	
Mucking System	Belt Conveyor		
Progress Data			
Mining Hours/Day	24	Days/Week	7
Average Progress/Ca	alendar Day	m	
Average Advance/Cal	I.Month	m	
Peak Advance/Cal.da		m	
Peak Advance/Cal.W	eek	m	
Peak Advance/Cal.M	onth	m	

ITA WG 14 - Mechanised Tunnelling
Project Number
www.ita-aites.org

CHALLENGING PROJECTS WORLDWIDE

Project Geology

Additional
Project
Information

The tunnel develops inside mountainside interested by various not-active slopes linked together and local active slope of big entity (Sparvo's Slope). The rocky layer never show on the surface because of the detritic layers. The tunnel start in a low leaning mountainside with detritic layer upon the main clay substrate (Argille a Palombini). The tunnell will progress until the sandstone Scabiazza type and heavly fractured Monghidoro sandstone. It follw up inside claysh poligenic conglomerate layer before to come back to the Scabiazza sandstone; after will develop in the main clay substrate caracterized by important Ophiolitic boulders. The tunnel will end in the Monte Venere sandstone and the covering detritic layer.

A huge presence in Methane into the geological formation is espected so special technical solution have been applied to the TBM in order to keep the potential incoming methane flow under control and assure Methane-Free zone along the TBM where the personnel is working. Detailed procedures based on Risk Matrix Effect and Risk Analisys have been studied and planned. The excavated tunnel will be managed according to the special regulation of the safety into gassy tunnels well known in Italy and usally applied in case of traditional excavation method.

Due to high risk of sqeezing effect the TBM have been designed with specific conicity and overcutting.For the same reason the TBM has been equipped with high level of thrust force and deviced to guarantee shield lubrication.

Reference

Publications

Criteria for the Challenging Project List

1. 3.2.2 Tunnel bored diameter in soft ground $[\geq 15 \mathrm{~m}]$

15.615 m

2. 4.0 Technology_Newly developed means and methods of TBM
3. Choose a criteria for challenging project

Special solution to reduce the risk of potential explosive atmosfere have been applid. It has been considered also the risk related to a little squeezing behaviour of the rock that in combination with the large diameter became an important task to be managed.

Information of the Sender	
Name	Maurizio Marchionni
E-Mail	maurizio.marchionni@pavimental.autostrade.it CompanySpea - Ingegneria Europea S.p.A. Via Girolamo Vida, 11 20127 Milano - Italy
Sent Date	May 12, 2011

CHALLENGING PROJECTS WORLDWIDE

PROJECT Dez to Ghomroud Water Conveyance Project, Long Tunnel Lot 1, Iran

Project Description	
Location	Southwest Aligodarz City lorestan Province, IRAN
Usages of the Tunnel	Water Conveyance
Year of Construction Start	2 0 0 6
Year of Const.Completion	2 0 1 1
Actual Construction Cost	100 Mio.US\$

Picture 1: EPB TBM for lot 1

Owner's Detail Name	Mahabghodss Consulting Engineers
Address	\#16 Takharestan St., Vahid Dastgerdy Ave.Tehran,IRAN Post code 1918781185
Phone	+9821 22902454
E-Mail	Ghomroud 3310@yahoo.com

Technical Data			
Length of Tunnel	11.3	km	
Excavation diameter	4.7	m	
Overburden depth	200	m Max.	
	50	m Min.	
Initial lining	Segmental Lining : sealed		
Thickness	0.3	m	
Inner Dia.	3.8	m	
Final lining	None		
Thickness		m	
Inner Dia		m	
Special Lining			
Water Pressure	5	bar (Max.at Crown)	
TBM Parameters			
Type of TBM	Soft Ground EPB Support		
Length of TBM	13	m	
Weight of TBM	300	Metric ton	
Trailing Gear Length	120	m	
Mucking System	Rolling Stuck		
Progress Data			
Mining Hours/Day	8	Days/Week	6
Average Progress/Ca	lendar Day	7.5 m	
Average Advance/Ca	I.Month	220 m	
Peak Advance/Cal.day		26 m	
Peak Advance/Cal.W	eek	110 m	
Peak Advance/Cal.M	onth	401 m	

ITA WG 14 - Mechanised Tunnelling

CHALLENGING PROJECTS WORLDWIDE

PROJECT

Project Geology
Fine and course alluvium, Alternation of schist\& slate metavolcanic and quartz

Additional

Project
Information

Anouj Water Conveyance Long Tunnel Lots 1 is a part of Dez to Ghomroud Water Conveyance Project that transfers water from upper DEZ watershed to the central plain in IRAN. As the main part of tunnel compose the fine \& course alluviums, EPB-TBM has been used.

Reference

Publications

Several papers in national work shops about the mechanized tunneling with TBM have been presented

1. Dewatering in mechanized tunneling with negative slope, case study Anouj Water Conveyance Long Tunnel Lot 1
2. Investigating the EPB -TBM performance, case study Anouj Water Conveyance Long Tunnel Lot 1
3. Contact grouting in soft ground

Criteria for the Challenging Project List

1.	3.1.2 Tunnel length_Without intermediate access in soft soil $[\geq 5 \mathrm{~km}]$	11 km
2.	2.2.2 Soft ground_Water permeability_EPB $[K \geq 10-3 \mathrm{~m} / \mathrm{s}]$	$10-3 \mathrm{~m} / \mathrm{s}$
3.	2.2.5 Soft ground_Applied face support pressure $[\geq 5 \mathrm{bar}]$	5 bar

Use several water collection sumps and dewatering pump system Sealing the segment lining with high pressure gaskets and contact grouting with bentonite- cement mortar synchronized with boring

Information of the Sender

Name	Khosravi Hassan
E-Mail	Ghomroud3310@yahoo.com
Company	Mahabghodss Consulting Engineers
Sent Date	May 14, 2011

