International Tunnelling Association (ITA) and Risk

George Fox Seminar

Harvey W Parker
President, International Tunnelling Association (ITA)

January 25, 2005
RISK & CHOICES ARE PLENTIFUL
Realistically, not all risks associated with complex construction projects can be entirely avoided or mitigated.
Risk Management for Tunnels

• Now Routine for Major Projects Worldwide
• ITA Guidelines
 – Published last year (2004)
• British Code of Practice
 – Published and in Effect
 – Attempts to Require it Internationally
• International Code of Practice
 – To be published
International Tunnelling Association

- ITA Founded in 1974
- Organization of Member Nations
 - NGO of the United Nations
- Member Nations = 53 ~20,000 People
- Annual Congress & General Assembly
 - Istanbul in May, 2005
 - Working Groups/Committees
- Communications
 - Website: www.ita-aites.org
 - ITA @News
 - Scientific Journal: TUST
Guidelines for tunnelling risk management: International Tunnelling Association, Working Group No. 2

Søren Degn Eskesen, Per Tengborg, Jørgen Kampmann, Trine Holst Veicherts
Tunnel Construction Risk

• Construction Imposes Risk on:
 – All Parties involved
 – Those not directly involved

• “Traditionally, risks have been managed indirectly through the engineering decisions taken during the project development.”

• ITA Guidelines recommend Systematic Risk Management Techniques instead
Systematic Risk Management Techniques

• The practice of performing risk management requires much experience, practical and theoretical knowledge.

• Can not cover every aspect therefore Guidelines are given by ITA to suggest Best Practice
Risk Management is Formula For:

- Minimizing Cost to Owner
- Maximizing Profit for Contractor

- Achieved by Joint
 - Planning and Problem Solving
 - Scheduling and Mitigation of Delays
 - Partnering
Risk Management

- Risk Identification
- Risk Assessment
- Risk Analysis
- Risk Elimination
- Risk Mitigation
Risk Objectives & Strategy

- Identify Hazards
- Identify Mitigation Measures
- Implement Measures to:
 - Eliminate Risk
 - Mitigate Risk to ALARP
- Conduct Risk Assessment at Each Stage of Design and Construction
<table>
<thead>
<tr>
<th>Early Design Stage</th>
<th>Owner</th>
<th>Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Establish risk policy</td>
<td>Preparation of tender, including:</td>
</tr>
<tr>
<td></td>
<td>Qualitative risk assessment</td>
<td>Proposed risk management system</td>
</tr>
<tr>
<td></td>
<td>Specific (quantitative) risk assessment</td>
<td>Description of experience and competence in risk management</td>
</tr>
<tr>
<td></td>
<td>Project Risk Register</td>
<td>Identification and description of risks associated with the proposed technical solution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tendering and Contract Negotiation</th>
<th>Owner</th>
<th>Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of tender documents, including:</td>
<td></td>
<td>Preparation of tender, including:</td>
</tr>
<tr>
<td>Description of significant technical risks</td>
<td></td>
<td>Proposed risk management system</td>
</tr>
<tr>
<td>Technical requirements to mitigate risk</td>
<td></td>
<td>Description of experience and competence in risk management</td>
</tr>
<tr>
<td>Required risk management competence</td>
<td></td>
<td>Identification and description of risks associated with the proposed technical solution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection of contractor, including evaluation of:</th>
<th>Contractor</th>
<th>Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor's ability to perform risk management</td>
<td></td>
<td>Identification and description of proposed risk mitigation measures</td>
</tr>
<tr>
<td>Risks involved in contractor's proposed technical solutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare contract with risk clauses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Award of contract</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Owner</th>
<th>Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervision and support of contractor's risk management</td>
<td></td>
<td>Establish risk management system</td>
</tr>
<tr>
<td>Assessment and mitigation of owner's risk</td>
<td></td>
<td>Detailed risk assessment with participation of owner</td>
</tr>
<tr>
<td>Approve on contractor's risk mitigation</td>
<td></td>
<td>Propose risk mitigation</td>
</tr>
</tbody>
</table>

Joint work in risk management team

Implement risk mitigation

Fig. 1. Risk management activity flow for owner and contractor.
<table>
<thead>
<tr>
<th>Early Design Stage</th>
<th>Owner</th>
<th>Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Establish risk policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualitative risk assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific (quantitative) risk assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Risk Register</td>
<td></td>
</tr>
</tbody>
</table>
Tendering and Contract Negotiation

Preparation of tender documents, including:
- Description of significant technical risks
- Technical requirements to mitigate risk
- Required risk management competence

Selection of contractor, including evaluation of:
- Contractor’s ability to perform risk management
- Risks involved in contractor’s proposed technical solutions

Prepare contract with risk clauses

Preparation of tender, including:
- Proposed risk management system
- Description of experience and competence in risk management
- Identification and description of risks associated with the proposed technical solution
- Identification and description of proposed risk mitigation measures
Award of contract

Construction Phase

Joint work in risk management team

Supervision and support of contractor's risk management

Assessment and mitigation of owner's risk

Approve on contractor's risk mitigation

Establish risk management system

Detailed risk assessment with participation of owner

Propose risk mitigation

Implement risk mitigation
Example Risk Matrix Classifications

• FREQUENCY
 – Very Unlikely
 – Unlikely
 – Occasional
 – Likely
 – Very Likely

• CONSEQUENCE
 – Insignificant
 – Considerable
 – Serious
 – Severe
 – Disastrous
RISK = IMPACT \times PROBABILITY

<table>
<thead>
<tr>
<th>IMPACT</th>
<th>Negligible</th>
<th>Unlikely</th>
<th>Likely</th>
<th>Probable</th>
<th>Very likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>High</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Medium</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Low</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Very low</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RISK</th>
<th>R=P \times I</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intolerable</td>
<td>17-25</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Significant</td>
<td>13-16</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Substantial</td>
<td>9-12</td>
<td>Early attention</td>
</tr>
<tr>
<td>Tolerable</td>
<td>5-8</td>
<td>Regular attention</td>
</tr>
<tr>
<td>Insignificant</td>
<td>1-4</td>
<td>Monitor</td>
</tr>
</tbody>
</table>

Note: The detailed process of risk identification is project-specific

In this case the high impact means the likelihood of the event must be considered with higher priority.

John Reilly Assoc Int’l / Geodata SPA
Fig. 2. Example of a fault tree with “and gates” and “or gates” and evaluated probabilities.
DRAFT
A Code of Practice for Risk Management of Tunnel Works
Drafted by
BTS in Association with Insurers
Background

• Insurance Industry
 – Big Insurance Losses
 – Insurers Lost 500%
 • Compared to 110% other construction

• Insurers Options:
 – Stop Insuring
 – Increase Premiums
 – Work with Tunnel Industry

• October 2001 ABI Approached BTS to Write a Joint Code of Practice
International Code

• Being Prepared by British Tunnelling Society for:
 – ABI (Association of British Insurers)
 – Based on British Code Now in Effect

• International Version Still in Draft Form

• Likely to be completed soon
 – Would Affect USA
Objectives of Code

- Promote And Secure Best Practice For Minimization And Management Of Risks
- Reduce Probability of a Loss Happening
- Reduce Size of Claim when Loss Occurs
- Give Insurers Better Understanding of Risk
- Enable Insurers to Enforce the Code
 - Reserve right to enter and inspect
 - Reserve right to cancel or suspend coverage
International Code

• Projects of 1 Million Pounds (~$2M)
 – Or otherwise risky projects
• Code Applies to:
 – Contractor’s All Risks Insurance
 – Third Party Liability Insurance
• Intended to operate in parallel with existing codes
 – If local codes do not exist, use Internationally-Recognized such as British Standards
Project Stage Basis

- Project Development Stage
- Construction Contract Procurement Stage
- Design Stages
- Construction Stage
Risk Register

- Developed at Soon as Project Identified
- Working Document
 - Updated at Each Stage
 - “Cascading” of Risk Registers; Stage to Stage
- Included in Information Given to Tenderers
- Contractor required to submit own Risk Register
- Continual Update by Contractor during Construction
Project Development Stage

- Client to assure sufficient time and budget to investigate and prepare designs
- Client to assure suitably qualified and experienced (hence competent) personnel
- Conduct Risk Assessment and Prepare Risk Register
 - Include effects on:
 - Third Parties
 - Environment
 - Risk Register Given to Contractor
Construction Contract Procurement Stage

- Use FICIC, ICE, National, or Proven Form of Contract
- Clearly delineate how all parties comply with Code
 - Responsibility for meeting the cost of Insurer’s Remedial Measures
- Include GBR in Contract Documents
 - Also Subcontract Documents
- Require tenderer to submit own Risk Register
- Must Pre-qualify Contractors
Fundamental Design Objective

- Code intended to not be prescriptive in Design
- Requires a Robust Design
- Risk of Failure or damage to the tunnel works or to a third party from all reasonably foreseeable causes, and including health and safety considerations, is extremely remote during the construction and the design life of the tunnel works
- Consider high consequence/low frequency events that could affect Third Party
Design Stage

• Assure transfer of information between successive designers
• Continued Risk Assessments and Risk Register updating
 – Constructability
 – GBR
 – Detail intermediate stages of construction
 – Sensitivity Studies
 – Third Parties
• Validate design by monitoring during construction
Construction Stage

- Continue aggressive risk management and risk register updating
- Defines requirements for contractor’s risk and management staff and training
- Requires Constructability Reviews Jointly with Designer
- Requires method statements that clearly and unequivocally detail the contractor’s methods and resources
- Monitoring required
Compliance

- Insurance contracts should include provisions enabling Insurers to enforce the requirements of the Code
- If necessary on pain of suspension or cancellation of the cover on what Insurers consider a breach of the Code
 - Can be reinstated if remedial measures taken
Future

• BTS or Insurers expected to complete draft and send to ITA asking for approval
• ITA will evaluate Code in many ways and by several committees and international experts to make sure the Code is fair to all parties and will work within the legal system of our Member Nations
 – In advance of receipt to provide input before draft is complete
 • AUA has been asked to provide input in advance of receiving the final Code
• So far, ITA has not published a Standard or a Code
• However, Insurers still have the options to withhold coverage or significantly increase costs
Challenge
Thank You